Stress Intensity Factor Determination in Functionally Graded Materials, Considering Continuously Varying of Material Properties
Authors
Abstract:
In this paper, the plates made of functionally graded material (FGM) with and without a crack are numerically simulated, employing the finite element method (FEM). The material property variations are defined to be fully continuous; therefore, the elements can be as small as required. For this purpose, variations of the material properties are applied in both the integration points and in the nodes by implementing a subroutine in the ABAQUS software and hence, the stress field in the singular points such as crack tip is accurately achieved. First, the stresses in the plate without a crack are numerically determined and the accuracy of FGM behavior is validated. Then, the J-integral is investigated and the stress intensity factor (SIF) of the plate with a crack is calculated, using the strain energy release rate (SERR) and the J -integral. In the following, dependency of the J-integral on the path is studied and the results are compared with the contour independent J-integral. Finally, it is shown that if the selected path limits toward zero, the results of the J-integral, the SERR, and the contour independent J-integral are all the same. This is due to considering the continuously varying of material properties and the effect of fining the mesh at the crack tip.
similar resources
Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
full textStress Concentration Factor in a Functionally Graded Material Plate around a Hole
Stress concentration factors have been examined in a functionally graded material (FGM) plate with central holes in different shapes in this essay. The material properties change along the thickness of plate. ABAQUS software has been utilized for modeling of problem in which subroutine of ABAQUS sub-program was used for modeling of the targeted material. The considering shapes for hole in plate...
full textStress Concentration Factor in a Functionally Graded Material Plate around a Hole
Stress concentration factors have been examined in a functionally graded material (FGM) plate with central holes in different shapes in this essay. The material properties change along the thickness of plate. ABAQUS software has been utilized for modeling of problem in which subroutine of ABAQUS sub-program was used for modeling of the targeted material. The considering shapes for hole in plate...
full textTopology Optimisation of Thermomechanical Functionally Graded Materials and Material Interfaces
The work applies topology optimisation to the design of functionally graded materials (FGMs) and materialinterfaces for thermomechanical problems. It is well known, that the mismatch in stiffness and thermal expansioncoefficient of two materials give rise to high stresses at the interface. One way to alleviate this is to use the conceptof FGMs [1]. The FGMs are here designed using t...
full textFinite element evaluation of mixed mode stress intensity factors in functionally graded materials
This paper is directed towards :nite element computation of fracture parameters in functionally graded material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded :nite elements are developed where the elastic moduli are smooth functions of spatial co-ordinates which are integrated into the element sti=ness matrix. In particular, stress intensity factors for mode I and mixed...
full textDisk Vibration Analysis of Functionally Graded Materials
Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus...
full textMy Resources
Journal title
volume 29 issue 12
pages 1741- 1746
publication date 2016-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023